

Nested Grid Climate Simulations In The GFDL High-Resolution Atmosphere Model

Lucas Harris NOAA Geophysical Fluid Dynamics Laboratory Princeton, NJ

> NOAA MAPP Webinar 9 April 2013

LOCAL REFINEMENT OF A GLOBAL MODEL GRID

- Want to improve representation of regional details, especially those which affect larger spatial scales
- Stretched-grid models' varying resolution restricts timestep and parameterizations
- Two-way nesting more versatile and allows separate parameterizations, but requires attention to boundary conditions and the regional-to-global update
- Two way nesting is very uncommon in global models

GFDL HIRAM: HIGH RESOLUTION ATMOSPHERE MODEL

- Model developed for efficient high-resolution (c180/0.5° and better) climate simulation
- Finite-volume hydrostatic dynamical core on the cubed-sphere grid
- Two-moment UW shallow+deep convection scheme and "six-phase" Lin (1983) microphysics

TWO-WAY NESTING

- · Boundary conditions linearly interpolated from coarse grid
- Two-way update: coarse-grid periodically replaced by nested-grid solution. Only winds and temperature are updated.
- Air mass and tracer mass not updated to coarse grid and so trivially conserved

FROM SINGLE GRID TO NESTED GRID SIMULATIONS

- Start by tuning a single-grid simulation to get as good of a global climate and regional details as can reasonably be expected.
- Keeping the global grid tunings constant, then tune the nested grid to improve regional details.
- How much can we improve regional details on the nested region?

SIMULATIONS

- Two controls: single-grid c90 (1°) and c192 (0.5°) 30-year AMIP simulations.
- Nested simulations: factor-of-three for c90, factor-of-two for c192
 - 30-year AMIP complete for c90 NA nest; others are *preliminary* 5-year climatological SST simulations
- Next project: nest to <10 km grid spacing

Maritime Continent Nest (MC)

North America Nest (NA)

MARITIME CONTINENT ANNUAL PRECIPITATION

TRMM x 1.3 Annual Precipitation

MARITIME CONTINENT MONSOON PRECIPITATION

mm/d

TRMM x 1.3 JJA Precipitation

MARITIME CONTINENT EFFECT OF PARAMETERIZATION TUNING c90 Ig AMIP

mm/d

c90 MC Nest Climo SST

c90 MC Nest Climo SST Nested tunings same as on coarse grid

US WINTER PRECIPITATION

US SPRING PRECIPITATION

US SUMMER PRECIPITATION

WINTER PRECIPITATION TWO-WAY VS. ONE-WAY NESTING

WINTER PRECIPITATION TWO-WAY VS. ONE-WAY NESTING

mm/d

